SIGNALS AND SYSTEMS

Course Code	19EC3303	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Recognize different characteristics of signals and systems						
CO2	Determine the response of LTI system to any arbitrary input signal using convolution						
CO3	Resolve continuous-time signals in frequency domain using Fourier series and Fourier						
	transform						
CO4	Analyse discrete-time signals and systems using DTFT						
CO5							
	time/discrete-time signals in complex plane						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

0				U /			/							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	2	2							2	2	1
CO2	3	3	3	2	2							2	2	1
CO3	3	3	2	2	2							2	2	1
CO4	3	3	3	2	2							2	2	1
CO5	3	3	2	2	2							2	2	1

	Syllabus					
Unit No.	Contents	Mapped CO				
Ι	Signals and Systems: Continuous-time and Discrete-time signals, Transformations of the independent variable, Exponential and Sinusoidal signals, The unit impulse and unit step functions, Continuous-time and Discrete-time systems, and Basic System properties.	CO1				
Ш	Linear Time Invariant Systems (LTI systems): Discrete-time LTI systems, The convolution sum, Continuous time LTI systems, The convolution Integral, Properties of Linear Time-Invariant Systems.	CO2				
III	Fourier analysis of Continuous Time Signals and Systems: Fourier series representation of continuous time periodic signals, convergence of the Fourier series, Properties of continuous-time Fourier series. The Continuous-Time Fourier Transform: The Fourier transform for periodic signals. Properties of the Continuous-time Fourier transform, Systems characterized by	CO3				

	linear constant-coefficient differential equations.					
	Fourier analysis of Discrete Time Signals and Systems: The					
	Discrete-Time Fourier Transform, Properties of the Discrete-time					
IV	Fourier transform, The Fourier transform for periodic signals.					
1 V	Systems characterized by linear constant-coefficient difference					
	equations.					
	Analysis of Continuous time and Discrete time signals using					
V	Laplace Transform and Z Transform: The Laplace Transform:					
	The Region of convergence for Laplace transforms, the Inverse	CO5				
	Laplace transform, Properties of the Laplace transform. The Z-	m. The Z-				
	Transform: The Region of Convergence for the Z-transform, The					
	Inverse Z-transform, Properties of the Z-transform.					

Learning Resources

1. Alan V. Oppenheim, Alan S. Wilsky with S.HamidNawab, 'Signals and Systems', 2/e, Pearson Education, 1997.

Reference Books

Text Books

1Bhagawandas P. Lathi, 'Linear Signals and Systems', Oxford University Press, 2009. 2.Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.

3. Signals and Systems using MATLAB, Kindle Edition, Luis Chaparro

e- Resources & other digital material

1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/TOC-M1.htm

2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/Course%20Objective.htm

3. http://www.stanford.edu/~boyd.ee102

4. http://www.ece.gatech.edu/users/bonnie/book

5. <u>http://ocw.mit.edu</u>